Plemelj Projection Operators over Domain Manifolds

نویسنده

  • John Ryan
چکیده

Plemelj projection operators are introduced for spaces of square integrable functions defined over the boundaries of a class of compact real n-dimensional manifolds lying in C. These manifolds posses many properties similar to domains in R, and are consequently called domain manifolds. The key ingredients used here are techniques from both real and complex Clifford analysis. Analogues of the Kerzman-Stein kernel and Szegö projection operators are introduced, and their conformal covariance is described.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Conformally Flat Spin Manifolds, Dirac Operators and Automorphic Forms

In this paper we study Clifford and harmonic analysis on some conformal flat spin manifolds. In particular we treat manifolds that can be parametrized by U/Γ where U is a simply connected subdomain of either S or R and Γ is a Kleinian group acting discontinuously on U . Examples of such manifolds treated here include RP and S1×Sn−1. Special kinds of Clifford-analytic automorphic forms associate...

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

Commutative curvature operators over four-dimensional generalized symmetric spaces

Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.

متن کامل

Gradient estimates for eigenfunctions on compact Riemannian manifolds with boundary

The purpose of this paper is to prove the L∞ gradient estimates and L∞ gradient estimates for the unit spectral projection operators of the Dirichlet Laplacian and Neumann (or more general, Ψ1-Robin) Laplacian on compact Riemannian manifolds (M, g) of dimension n ≥ 2 with C2 boundary . And we also get an upper bounds for normal derivatives of the unit spectral projection operators of the Dirich...

متن کامل

New Proof of Hörmander multiplier Theorem on compact manifolds without boundary

On compact manifolds (M, g) without boundary of dimension n ≥ 2, the gradient estimates for unit band spectral projection operators χλ is proved for any second order elliptic differential operators L by maximum principle. A new proof of Hörmander Multiplier Theorem on the eigenfunction expansion of the operator L is given in this setting by using the gradient estimates and the Calderón-Zygmund ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008